Volver a Guía
Ir al curso
CURSO RELACIONADO
Análisis Matemático 66
2025
GUTIERREZ (ÚNICA)
¿Te está ayudando la guía resuelta?
Sumate a nuestro curso, donde te enseño toda la materia de forma súper simple. 🥰
Ir al curso
ANÁLISIS MATEMÁTICO 66 CBC
CÁTEDRA GUTIERREZ (ÚNICA)
3.
Calcule, si existe, el límite de las siguientes sucesiones.
e) $e_{n}=\frac{\sqrt{n^{3}}+2}{n^{2}-1}$
e) $e_{n}=\frac{\sqrt{n^{3}}+2}{n^{2}-1}$
Respuesta
Queremos calcular este límite:
Reportar problema
$\lim_{n \rightarrow \infty} \frac{\sqrt{n^{3}}+2}{n^{2}-1}$
Y si bien lo del numerador no es un polinomio (porque tenemos $n^{\frac{3}{2}}$ y eso estrictamente no es un polinomio, la potencia tendría que ser un número natural), a "efectos prácticos", podemos pensarlo "como si fuera un polinomio" y lo trabajamos igual que los límites anteriores. ¿Entonces qué hacemos? Y claro, sacamos factor común el que manda... mirá como nos queda:
$\lim_{n \rightarrow \infty} \frac{n^{3/2}(1 + \frac{2}{n^{3/2}})}{n^2(1 - \frac{1}{n^2})} $
Ahora, usando reglas de potencias:
$\frac{n^{3/2}}{n^2} = n^{\frac{3}{2} - 2} = n^{-\frac{1}{2}} = \frac{1}{n^{\frac{1}{2}}} = \frac{1}{\sqrt{n}} $
Entonces,
$\lim_{n \rightarrow \infty} \frac{n^{3/2}(1 + \frac{2}{n^{3/2}})}{n^2(1 - \frac{1}{n^2})} = \lim_{n \rightarrow \infty} \frac{1}{\sqrt{n}} \cdot \frac{(1 + \frac{2}{n^{3/2}})}{(1 - \frac{1}{n^2})} = 0 $
Acá en este ejercicio se empieza a notar lo importante y recontra clave que es tener bien en claras las reglas de potenciación 😉
🤖
¿Tenés dudas? Pregúntale a ExaBoti
Asistente de IA para resolver tus preguntas al instante🤖
¡Hola! Soy ExaBoti
Para chatear conmigo sobre este ejercicio necesitas iniciar sesión
Confirmar eliminación
¿Estás segurx de que quieres eliminar esta respuesta? Esta acción no se puede deshacer.
Confirmar eliminación
¿Estás segurx de que quieres eliminar este comentario? Esta acción no se puede deshacer.
Confirmar eliminación
¿Estás segurx de que quieres eliminar esta respuesta? Esta acción no se puede deshacer.
Confirmar eliminación
¿Estás segurx de que quieres eliminar este comentario? Esta acción no se puede deshacer.
Confirmar eliminación
¿Estás segurx de que quieres eliminar esta respuesta? Esta acción no se puede deshacer.
Confirmar eliminación
¿Estás segurx de que quieres eliminar este comentario? Esta acción no se puede deshacer.
Confirmar eliminación
¿Estás segurx de que quieres eliminar esta respuesta? Esta acción no se puede deshacer.
Confirmar eliminación
¿Estás segurx de que quieres eliminar este comentario? Esta acción no se puede deshacer.